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I – CONVERGENCE AND I - CONTINUITY  

OF THE FUZZY NUMBER-VALUED FUNCTIONS 

I – KONVERGENCIA A  I – SPOJITOSŤ FUNKCIÍ  

S HODNOTAMI VO FUZZY ČÍSLACH 

PETER VRÁBEL – MARTA VRÁBELOVÁ 

ABSTRACT. In this paper we study a convergence and continuity of the fuzzy number-valued 

functions with respect to an ideal. We prove some basic properties this convergence and 

continuity.  
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ABSTRAKT. Tento článok pojednáva o konvergencii a spojitosti funkcií s hodnotami vo fuzzy 

číslach vzhľadom na nejaký ideál. V článku sú dokázané základné vlastnosti takejto 

konvergencie a spojitosti.  
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Introduction 

I-convergence and I-continuity of the real-valued functions was defined by T. Šalát, P. 

Kostyrko and W. Wilczyński in [2]. It is possible find further results and some 

generalizations of this problem in papers [1], [3], [5]. We generalize I-convergence and I-

continuity for the fuzzy number-valued functions. The fuzzy set-valued mappings are 

studied in various settings in the last few years.  For example the integrals of fuzzy set-

valued mappings have applications in mathematical economics and optimal control theory.  

I-convergence of fuzzy numbers 

In this section we deal with the structure of fuzzy numbers and its I-convergence. 

Definition 1. The fuzzy number is any function ]1 ,0[: Ru , where R is the set of real 

numbers, satisfying the following conditions: 

(1) there exists Rx 0  such that ,1)( 0 xu  

(2) the  cut set   })( ;{ 


 xuRxu  is convex for every  1 ,0 , 

(3) u  is upper semi-continuous, i.e. any   ucut  -  is a closed subset of  R, 

(4) the support   0 ;  xuRx  of the function  u is a compact set. 

The set of fuzzy numbers we denote E. The set of real numbers can be embedded into 

E; the real number z is identified with the fuzzy number  zz  , i.e. with the function  
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For the proof of the following lemma see [4]. 

Lemma 2. If  Eu  then 

(a)  u  is a closed interval for every  1 ,0 , 

(b)     12 
uu   whenever 10 21   , 

(c) if      .    then   ,
1


 uu

n
n

n 




  

Conversely, if system of intervals      1 0, ; 


M  fulfills (a) – (c), then there exists a 

unique Eu  such that    
Mu   for every  1 ,0 . 

The sum of fuzzy numbers u, v is a fuzzy number z such that 

     
vuzvuz         

for every  1 ,0 , where the sum of intervals       ,  ,  ,  a b c d a c b d    . 

The partial ordering on the set E is defined in the following way 

    vuvu          

for every  1 ,0 , where       dbcadcba             , , . 

The Hausdorff distance d of closed possibly degenerate intervals is defined by equation 

        ,  max   , , , bdacdcbad  . 

We can define the metric    ,0: EED , 

          1 ,0 ;  ,  sup ,  


vudvuD . 

Then  DE  ,  is a complete metric space. The following properties of the metric D can be 

found in [6]: 

(i)     ,,,  allfor    , , EwvuvuDwvwuD   

(ii)       ,,,,  allfor   z , , w, EzwvuvDwuDzvuD   

(iii)       ,,  allfor   0 ,0 ,0 , EvuvDuDvuD   

(iv)       .,,  allfor   0 , , w, EwvuvDwuDvuD   

The product of fuzzy numbers u, v is a fuzzy number z such that 

                     for every  1 ,0 , 

where the product of intervals              {                  }. The absolute 

value of a fuzzy number u is a fuzzy number | | such that  | |   |    | for every 

 1 ,0 , where |     |  {| |        }   

        For any intervals                   

                              {| | | |}                 
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Let         and let | |   ,     . Then for every          | |         and 

                                         , 

consequently                 . 

Lemma 3. If a sequence {  }   
  of fuzzy numbers converges in metric space       to 

   , then there is     such that      for every      

Proof. There is     such that           for any        . Denote  

      [  
   

   
   

],      [         ],       

For any         we have 

|  
   

     |                                 

Put  

     {   {  
   

   
   

     
   

}           },      {              }. 

The number         {   }  is searched number. 

 I-convergence of a sequence of fuzzy numbers is defined by notion admissible ideal  

I of sets of natural numbers. 

 Set I,       , where      is system of all subsets of  , are called ideal, if satisfies 

conditions: 

 1
0
     for any         also       ; 

 2
0
     if     and    , then    ; 

 3
0
     every finite subset of   belongs to  ; 

 4
0
         

      Let     denote the set of all even natural numbers. Let    {                  },  

      {            (  )                               }. Then       are 

examples of admissible ideals. 

      It is suitable to use also the notion of the filter which is determined by an ideal  , i. e.  

      {                   }.  
      Next assertions about an ideal   are evident:  

 5
0
  if    , then      , 

 6
0
  if    , then     is infinite. 

  Definition 4. A sequence {  }   
  of fuzzy numbers is said to converge to   with respect 

to the ideal   ( we write              ) if  

     {             }    

for each      

      Any sequence {  }   
  of  fuzzy numbers has at most one  -limit. If     are  -limit this 

sequence, then for every      

 (
 

 
)  {              }   ,  (

 

 
)  {              }   , 
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   (
 

 
)    (

 

 
)   ,      . 

For any       

                            

So          and      

      A fuzzy number   is called the limit point of a sequence {  }   
  of  fuzzy numbers, if  

  is limit of some its subsequence, i.e.              
  , where {  }   

  is an 

increasing sequence of natural numbers. 

Proposition 5. Let               Then   is a limit point of the sequence {  }   
 . 

Proof. For any     the set {             
 

 
} is infinite. There is an increasing 

sequence of natural numbers {  }   
  such that      

    
 

 
 for every      It is 

evident that              
  . So   is a limit point of a sequence {  }   

 . 

Proposition 6. If              and             , then  

     
   

             

 Proof. Denote us 

     {                  }, 

  (
 

 
)  {            

 

 
},   (

 

 
)  {            

 

 
} 

for any      Obviously   (
 

 
)   (

 

 
)     

For any                                   (see (ii)). 

The following implication is true 

(    (
 

 
)      (

 

 
))         ,  

or otherwise equivalently 

        (    (
 

 
)      (

 

 
)) 

accordingly        (
 

 
)    (

 

 
)   , consequently         

Proposition 7. If              and             , then  

     
   

           

Proof.  For any                                     . By lemma 3 we obtain 

       such that  | |      and  |  |    for every           . Let      The sets 

   {             

  
},    {             

  
} belong to     . Evidently 

               So for any           we obtain 

                                

                    
 

  
   

 

  
    

Hence {                }    and so                    
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I-continuity of the fuzzy number-valued functions 

      It is possible to define I-convergence of sequences in any topological space. Let        

be a topology space with topology   and let   be an admissible ideal.  

Definition 8. A sequence {  }   
  of points from   is said to converge to   with respect to 

the ideal   (we write              ) if  

     {         }    

for any            

       We will consider functions      , where       is a topology space and   is the set 

of fuzzy numbers.  

Definition 9. Let    and    be admissible ideals. A function       is said to be        - 

continuous at            if 

       
   

            
   

            

holds for every sequence {  }   
  of points from    

Proposition 10. If functions     are        - continuous at      then     is        - 

continuous at      

Proof. Let                ,          {                            }  

   {                    

 
},    {                    

 
} for any      

For any      

                                                     

                               . 

By proposition 5                 , consequently          

Proposition 11. If functions     are        - continuous at      then     is        - 

continuous at      

Proof.  Let                 . By lemma 3 we obtain        such that |     |     

|     |    for every            . Let      The sets  

   {                    

  
},    {                    

  
} 

belong to      . So for any                 we obtain 

                                                   

                                                      

                                     

Hence {     (                       )   }     and so 
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