

I – CONVERGENCE AND I - CONTINUITY OF THE FUZZY NUMBER-VALUED FUNCTIONS

I – KONVERGENCIA A I – SPOJITOSŤ FUNKCIÍ S HODNOTAMI VO FUZZY ČÍSLACH

PETER VRÁBEL – MARTA VRÁBELOVÁ

ABSTRACT. In this paper we study a convergence and continuity of the fuzzy number-valued functions with respect to an ideal. We prove some basic properties this convergence and continuity.

KEY WORDS: fuzzy number, I-convergence, I-continuity

ABSTRAKT. Tento článok pojednáva o konvergencii a spojitosti funkcií s hodnotami vo fuzzy číslach vzhľadom na nejaký ideál. V článku sú dokázané základné vlastnosti takejto konvergencie a spojitosti.

KĽÚČOVÉ SLOVÁ: fuzzy číslo, I-konvergencia, I-spojitosť

CLASSIFICATION: 26A03 26A15, 54A20, 03E72, 119

Introduction

I-convergence and *I*-continuity of the real-valued functions was defined by T. Šalát, P. Kostyrko and W. Wilczyński in [2]. It is possible find further results and some generalizations of this problem in papers [1], [3], [5]. We generalize *I*-convergence and *I*-continuity for the fuzzy number-valued functions. The fuzzy set-valued mappings are studied in various settings in the last few years. For example the integrals of fuzzy set-valued mappings have applications in mathematical economics and optimal control theory.

I-convergence of fuzzy numbers

In this section we deal with the structure of fuzzy numbers and its I-convergence.

Definition 1. The fuzzy number is any function $u: R \rightarrow [0,1]$, where *R* is the set of real numbers, satisfying the following conditions:

(1) there exists $x_0 \in R$ such that $u(x_0) = 1$,

(2) the α -cut set $(u)^{\alpha} = \{x \in R; u(x) \ge \alpha\}$ is convex for every $\alpha \in (0, 1]$,

- (3) *u* is upper semi-continuous, i.e. any α cut $(u)^{\alpha}$ is a closed subset of *R*,
- (4) the support $\overline{\{x \in R; u(x) > 0\}}$ of the function *u* is a compact set.

The set of fuzzy numbers we denote *E*. The set of real numbers can be embedded into *E*; the real number *z* is identified with the fuzzy number $\overline{z} = \chi_{\{z\}}$, i.e. with the function

$$\chi_{\{z\}}(x) = \begin{cases} 1, & x = z \\ 0, & x \neq z \end{cases}.$$

For the proof of the following lemma see [4].

Lemma 2. If $u \in E$ then

- (a) $(u)^{\alpha}$ is a closed interval for every $\alpha \in (0, 1]$,
- (b) $(u)^{\alpha_2} \subset (u)^{\alpha_1}$ whenever $0 \le \alpha_1 \le \alpha_2 \le 1$,
- (c) if $\alpha_n \uparrow \alpha$, then $\bigcap_{n=1}^{\infty} (u)^{\alpha_n} = (u)^{\alpha}$.

Conversely, if system of intervals $\{(M)^{\alpha}; \alpha \in [0,1]\}$ fulfills (a) – (c), then there exists a unique $u \in E$ such that $(u)^{\alpha} = (M)^{\alpha}$ for every $\alpha \in (0,1]$.

The sum of fuzzy numbers u, v is a fuzzy number z such that

$$z = u + v \iff (z)^{\alpha} = (u)^{\alpha} + (v)^{\alpha}$$

for every $\alpha \in (0,1]$, where the sum of intervals [a, b] + [c, d] = [a+c, b+d].

The partial ordering on the set E is defined in the following way

$$u \le v \iff (u^{\alpha}) \le (v)^{\alpha}$$

for every $\alpha \in (0,1]$, where $[a,b] \leq [c,d] \Leftrightarrow (a \leq c \land b \leq d)$.

The Hausdorff distance d of closed possibly degenerate intervals is defined by equation

$$d([a,b],[c,d]) = \max\{|c-a|,|d-b|\}.$$

We can define the metric $D: E \times E \rightarrow [0, \infty)$,

$$D(u,v) = \sup \left\{ d(u)^{\alpha}, (v)^{\alpha} \right\}; \alpha \in (0,1] \right\}.$$

Then (E, D) is a complete metric space. The following properties of the metric D can be found in [6]:

- (i) D(u+w, v+w) = D(u, v) for all $u, v, w \in E$,
- (ii) $D(u+v, w+z) \le D(u, w) + D(v, z)$ for all $u, v, w, z \in E$,
- (iii) $D(u+v,\overline{0}) \le D(u,\overline{0}) + D(v,\overline{0})$ for all $u, v \in E$,
- (iv) $D(u+v, w) \le D(u, w) + D(v, \overline{0})$ for all $u, v, w \in E$.

The product of fuzzy numbers u, v is a fuzzy number z such that

$$z = u \cdot v \Leftrightarrow (z)^{\alpha} = (u)^{\alpha} \cdot (v)^{\alpha}$$
 for every $\alpha \in (0, 1]$,

where the product of intervals $[a, b] \cdot [c, d] = \{xy; x \in [a, b] \land y \in [c, d]\}$. The absolute value of a fuzzy number *u* is a fuzzy number |u| such that $(|u|)^{\alpha} = |(u)^{\alpha}|$ for every $\alpha \in (0, 1]$, where $|[a, b]| = \{|x|; x \in [a, b]\}$.

For any intervals [*a*, *b*], [*c*, *d*], [*e*, *f*]

$$d([a,b] \cdot [e,f], [c,d] \cdot [e,f]) \le \max\{|e|, |f|\}. d([a,b] \cdot [c,d]).$$

Let $u, v, z \in E$ and let $|z| \leq K, K \in \mathbb{R}^+$. Then for every $\alpha \in (0,1]$ $(|z|)^{\alpha} \subseteq [0,K]$ and

 $d((uz)^{\alpha}, (vz)^{\alpha}) \le d((Ku)^{\alpha}, (Kv)^{\alpha}) = Kd((u)^{\alpha}, v^{\alpha}),$ consequently $D(uz, vz) \le KD(u, v).$

Lemma 3. If a sequence $\{u_n\}_{n=1}^{\infty}$ of fuzzy numbers converges in metric space (E, D) to $u \in E$, then there is $K \in R$ such that $u_n \leq K$ for every $n \in N$.

Proof. There is $m \in N$ such that $D(u_n, u) < 1$ for any $\in N$, m < n. Denote

$$(u_n)^{\alpha} = \left[a_n^{(\alpha)}, b_n^{(\alpha)}\right], u^{(\alpha)} = \left[a^{(\alpha)}, b^{(\alpha)}\right], n \in \mathbb{N}.$$

For any $\alpha \in (0,1]$ we have

$$\left| b_n^{(\alpha)} - b^{(\alpha)} \right| \le d((u_n)^{\alpha}, (u)^{\alpha}) \le D(u_n, u) < 1, m < n.$$

Put

$$L = \sup \left\{ \max \left\{ b_1^{(\alpha)}, b_2^{(\alpha)}, \cdots, b_m^{(\alpha)} \right\}; \ \alpha \in (0,1] \right\}, M = \sup \left\{ b^{(\alpha)} + 1; \alpha \in (0,1] \right\}.$$

The number K, $K = \max\{L, M\}$, is searched number.

I-convergence of a sequence of fuzzy numbers is defined by notion admissible ideal *I* of sets of natural numbers.

Set $I, I \subseteq P(N)$, where P(N) is system of all subsets of N, are called ideal, if satisfies conditions:

1⁰ for any $A \in I, B \in I$ also $A \cup B \in I$;

 2^0 if $A \in I$ and $B \subseteq A$, then $B \in I$;

 3^0 every finite subset of *N* belongs to *I*;

Let N_p denote the set of all even natural numbers. Let $I_1 = \{A \in P(N); A \text{ is finite}\}$, $I_2 = I_1 \cup \{A \in P(N); \exists B \in P(N_p) \exists C \in I_1 | A = B \cup C \text{ and } B \text{ is infinite}\}$. Then I_1, I_2 are examples of admissible ideals.

It is suitable to use also the notion of the filter which is determined by an ideal *I*, i. e. $\mathcal{F}(I) = \{X \in P(N); \exists A \in I X = N - A\}.$

Next assertions about an ideal *I* are evident:

- 5^0 if $A \in I$, then $N A \notin I$,
- 6^0 if $A \in I$, then N A is infinite.

Definition 4. A sequence $\{u_n\}_{n=1}^{\infty}$ of fuzzy numbers is said to converge to u with respect to the ideal I (we write $I - \lim_{n \to \infty} u_n = u$) if

$$A(\varepsilon) = \{n \in N; D(u_n, u) \ge \varepsilon\} \in I$$

for each $\varepsilon > 0$.

Any sequence $\{u_n\}_{n=1}^{\infty}$ of fuzzy numbers has at most one *I*-limit. If u, v are *I*-limit this sequence, then for every $\varepsilon > 0$

$$A\left(\frac{\varepsilon}{2}\right) = \{n \in N; \ D(u_n, u) \ge \varepsilon\} \in I, \ B\left(\frac{\varepsilon}{2}\right) = \{n \in N; \ D(u_n, v) \ge \varepsilon\} \in I,$$

 $^{4^0 \}quad N \notin I.$

$$C = A\left(\frac{\varepsilon}{2}\right) \cup B\left(\frac{\varepsilon}{2}\right) \in I, N - C \neq \emptyset$$

For any $x \in N - C$

$$0 \le D(u, v) \le D(u, u_n) + D(u_n, v) < \varepsilon.$$

So D(u, v) = 0 and u = v.

A fuzzy number u is called the limit point of a sequence $\{u_n\}_{n=1}^{\infty}$ of fuzzy numbers, if u is limit of some its subsequence, i.e. $I_1 - \lim_{n \to \infty} u_{k_n} = u$, where $\{k_n\}_{n=1}^{\infty}$ is an increasing sequence of natural numbers.

Proposition 5. Let $I - \lim_{n \to \infty} u_n = u$. Then u is a limit point of the sequence $\{u_n\}_{n=1}^{\infty}$.

Proof. For any $n \in N$ the set $\{k \in N; D(u_k, u) < \frac{1}{n}\}$ is infinite. There is an increasing sequence of natural numbers $\{k_n\}_{n=1}^{\infty}$ such that $D(u_{k_n}, u) < \frac{1}{n}$ for every $n \in N$. It is evident that $I_1 - \lim_{n \to \infty} u_{k_n} = u$. So u is a limit point of a sequence $\{u_n\}_{n=1}^{\infty}$.

Proposition 6. If $I - \lim_{n \to \infty} u_n = u$ and $I - \lim_{n \to \infty} v_n = v$, then

$$I - \lim_{n \to \infty} (u_n + v_n) = u + v.$$

Proof. Denote us

$$A(\varepsilon) = \{n \in N; D(u_n + v_n, u + v) \ge \varepsilon\},\$$
$$_1\left(\frac{\varepsilon}{2}\right) = \left\{n \in N; D(u_n, u) \ge \frac{\varepsilon}{2}\right\}, A_2\left(\frac{\varepsilon}{2}\right) = \left\{n \in N; D(v_n, v) \ge \frac{\varepsilon}{2}\right\}$$

for any $\varepsilon > 0$. Obviously $A_1(\frac{\varepsilon}{2}), A_2(\frac{\varepsilon}{2}) \in I$. For any $n \in N D(u_n + v_n, u + v) \leq D(u_n, u) + D(v_n, v)$ (see (ii)). The following implication is true

$$\left(n \notin A_1\left(\frac{\varepsilon}{2}\right) \land n \notin A_2\left(\frac{\varepsilon}{2}\right)\right) \Rightarrow n \notin A(\varepsilon),$$

or otherwise equivalently

$$n \in A(\varepsilon) \Rightarrow \left(n \in A_1\left(\frac{\varepsilon}{2}\right) \lor n \in A_2\left(\frac{\varepsilon}{2}\right)\right)$$

accordingly $A(\varepsilon) \subseteq A_1\left(\frac{\varepsilon}{2}\right) \cup A_2\left(\frac{\varepsilon}{2}\right) \in I$, consequently $A(\varepsilon) \in I$.

Proposition 7. If $I - \lim_{n \to \infty} u_n = u$ and $I - \lim_{n \to \infty} v_n = v$, then

$$I-\lim_{n\to\infty}(u_nv_n)=uv.$$

Proof. For any $\in N$ $D(u_n v_n, uv) \leq D(u_n v_n, uv_n) + D(uv_n, uv)$. By lemma 3 we obtain $K, L \in R^+$ such that $|u| \leq L$ and $|v_n| \leq K$ for every $n \in B \in \mathcal{F}(I)$. Let $\varepsilon > 0$. The sets $M_1 = \{n \in N; D(u_n, u) < \frac{\varepsilon}{2K}\}, M_2 = \{n \in N; D(v_n, v) < \frac{\varepsilon}{2L}\}$ belong to $\mathcal{F}(I)$. Evidently $M_1 \cap M_2 \cap B \in \mathcal{F}(I)$. So for any $n \in M_1 \cap M_2 \cap B$ we obtain

$$D(u_n v_n, uv) \le D(Ku_n, Ku) + D(Lv_n, Lv) =$$

$$KD(u_n, u) + LD(v_n, v) < K \cdot \frac{\varepsilon}{2K} + L \cdot \frac{\varepsilon}{2L} = \varepsilon.$$

Hence $\{n \in N; D(u_n v_n, uv) \ge \varepsilon\} \in I$ and so $I - \lim_{n \to \infty} (u_n v_n) = uv$.

I-continuity of the fuzzy number-valued functions

It is possible to define I-convergence of sequences in any topological space. Let (X, \mathcal{T}) be a topology space with topology \mathcal{T} and let *I* be an admissible ideal.

Definition 8. A sequence $\{x_n\}_{n=1}^{\infty}$ of points from X is said to converge to x with respect to the ideal I (we write $I - \lim_{n \to \infty} x_n = x$) if

$$A(T) = \{n \in N; x_n \notin T\} \in I$$

for any $T \in \mathcal{T}$, $x \in T$.

We will consider functions $f: X \to E$, where (X, \mathcal{T}) is a topology space and E is the set of fuzzy numbers.

Definition 9. Let I_1 and I_2 be admissible ideals. A function $f: X \to E$ is said to be (I_1, I_2) continuous at $x_0, x_0 \in X$, if

$$I_1 - \lim_{n \to \infty} x_n = x_0 \Longrightarrow I_2 - \lim_{n \to \infty} f(x_n) = f(x_0)$$

holds for every sequence $\{x_n\}_{n=1}^{\infty}$ of points from X.

Proposition 10. If functions f, g are (l_1, l_2) - continuous at x_0 , then f + g is (l_1, l_2) continuous at x_0 .

Proof. Let $I_1 - \lim_{n \to \infty} x_n = x_0$, $A_{f+g}(\varepsilon) = \{n \in N; D((f+g)(x_n), (f+g)(x_0)) \ge \varepsilon\}$, $A_f = \{n \in N; D(f(x_n), f(x_0)) \ge \frac{\varepsilon}{2}\}$, $A_g = \{n \in N; D(g(x_n), g(x_0)) \ge \frac{\varepsilon}{2}\}$ for any $\varepsilon > 0$. For any $n \in N$ $D((f+g)(x_n), (f+g)(x_0)) = D(f(x_n) + g(x_n), f(x_0) + g(x_0)) \le \varepsilon$

$$D(f(x_n), f(x_0)) + D(g(x_n), g(x_0)).$$

By proposition 5 $A_{f+g}(\varepsilon) \subseteq A_f \cup A_g \in I_2$, consequently $A(\varepsilon) \in I_2$.

Proposition 11. If functions f, g are (l_1, l_2) - continuous at x_0 , then $f \cdot g$ is (l_1, l_2) continuous at x_0 .

Proof. Let $I_1 - \lim_{n \to \infty} x_n = x_0$. By lemma 3 we obtain $K, L \in \mathbb{R}^+$ such that $|f(x_0)| \le L$ $|g(x_n)| \le K$ for every $n \in B \in \mathcal{F}(I_2)$. Let $\varepsilon > 0$. The sets

$$M_1 = \left\{ n \in N; D(f(x_n), f(x_0)) < \frac{\varepsilon}{2K} \right\}, M_2 = \left\{ n \in N; D(g(x_n), g(x_0)) < \frac{\varepsilon}{2L} \right\}$$

belong to $\mathcal{F}(I_2)$. So for any $n \in M_1 \cap M_2 \cap B \in \mathcal{F}(I_2)$ we obtain

$$D((f \cdot g)(x_n), (f \cdot g)(x_0)) = D(f(x_n)g(x_n), f(x_0)g(x_0)) \le D(f(x_n)g(x_n), f(x_0)g(x_n)) + D(f(x_0)g(x_n), f(x_0)g(x_0)) \le K D(f(x_n), f(x_0)) + LD(g(x_n), g(x_0)) < \varepsilon.$$

Hence $\{n \in N; D(f(x_n)g(x_n), f(x_0)g(x_0)) \ge \varepsilon\} \in I_2$ and so $I_2 - \lim_{n \to \infty} f(x_n)g(x_n) = f(x_0)g(x_0).$

References

- [1] Boccuto, A. Dimitriou, X. Papanastassiou, N. Wilczyński, W: *Modes of ideal continuity and the additive property in Riesz space setting*, Journal of Applied Analysis, to appear.
- [2] Kostyrko, P. Šalát, T. Wilczyński, W: I-convergence, Real Anal. Exchance 26 (2000/2001), 669-685.
- [3] Kostyrko, P. Mačaj, M. Šalát, T. Sleziak, M.: *I-convergence and extremal I-limit points*, Math. Slovaca 55(4) (2005), 443-464.
- [4] Riečan, B. Neubrunn, T.: *Integral, measure and ordering*, Kluwer Academic Publisher, Dordrech, 1997, ISBN 0-7923-4566-5.
- [5] Šalát, T. Tripathy, B.C. Ziman, M.: On some properties of I-convergence, Tatra Mt. Math. Publ. 28(2) (2004), 274-
- [6] Wu Congxin Gong Zengtai: On Henstock integral of fuzzy-number-valued functions, Fuzzy Sets and Systems 120, (2001), 523-532.

Received on April 12, 2013.

Addresses

Doc. RNDr. Peter Vrábel, CSc. Doc. RNDr. Marta Vrábelová, CSc. Department of Mathematics, Faculty of Natural Sciences, Constantine the Philosopher University, Trieda A. Hlinku 1, SK – 949 74 Nitra e-mail: pvrabel@ukf.sk, mvrabelova@ukf.sk