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1 Introduction 

      In this paper we give some versions of convergence and Nikodým boundedness 

theorems for topological group-valued measures with respect to filters. In this setting, in 

general it is impossible to obtain results analogous to the classical ones, even for positive 

real-valued measures (see for instance [2, Example 3.4], [4, Remark 3.8]). However, for 

suitable classes of filters/ideals, it is possible to get different versions of such kinds of 

theorems (see for instance [1] for real- valued measures and [2, 3, 4] for lattice group-

valued measures). 

      Here, using some techniques similar to those in [5, 6, 7], we deal with the topological 

group setting. We first consider the  -additive case and then, using the Stone 

Isomorphism Theorem, we investigate also the finitely additive case. We consider a 

concept of semivariation analogous to the classical one and we deal directly with measures 

defined on a  -algebra of parts of an abstract set, without needing preliminary results for 

measures defined on the class of all subsets of N , and giving an approach different from 

that in [3, 4].  

2  Preliminaries 

      Let Z  be any set. A filter F  of Z  is a nonempty collection of subsets of Z  with 

F , FBA  whenever A , FB , and such that for each FA  and AB   we get 

FB . 

     A filter of Z  is said to be free iff it contains the filter 
cofinF  of all cofinite subsets of Z . 

     Let P  be a countable set, and F  be a filter of P . A subset of P  is F -stationary iff it 

has nonempty intersection with every element of F . We denote by *F  the family of all F -

stationary subsets of P . 

     If *FI , then the trace )(IF  of F  on I  is the family }:{ F AIA . 

     A filter F  of P  is diagonal iff for every sequence 
nnA )(  in F  and for each *FI  there 

exists a set IJ  , *FJ  such that the set 
nAJ \  is finite for all Nn  (see also [3, 4]). 

      Observe that )(IF  is a filter of I . Indeed, if 
1F , )(2 IF F , then 

F )()(=)( 2121 IFIFIFF , and hence )(21 IFF F . 
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      Let now FF  and IFIF '  , and set FFF ':=* : then F*F  and 

IFIF * . It is readily seen that IFF '  * . To prove the converse inclusion, 

observe that '' FIFIFIF  )()(=* . Hence, IFF ' *=  belongs to )(IF , and 

thus we get the claim. 

      Given an infinite set PI  , a blocking of I  is a countable partition }:{ NkDk
 of I  

into nonempty finite subsets. 

      A filter F  of P  is said to be block-respecting iff for every *FI  and for each blocking 

}:{ NkDk
 of I  there is a set *FJ , IJ   with 1=)(# kDJ   for all Nk , where #  

denotes the number of elements of the set into brackets. 

Some examples of filters satisfying these properties and of filters lacking them can be 

found in [1]. 

 

      The following result will be useful in the sequel.  

 

Proposition 2.1  If F  is a block-respecting filter of N , then )(IF  is a block-respecting 

filter of I  for every *FI .  

Proof: Let NI  be any F -stationary set, IL  be any )(IF -stationary set and 

}:{ NkDk
 be any blocking of L . If FF , then  FLIFL = , and so *FL . 

By hypothesis, there exists a set *FJ , LJ  , with 1=)(# kDJ   for all Nk . In 

particular, IFLFL  = . From this it follows that *)(IJ F . Thus we get the 

assertion.  

      From now on F  is a free filter of N , ),(= RR  is a Hausdorff complete abelian 

topological group satisfying the first axiom of countability, with neutral element 0 , and 

(0)J  denotes a basis of closed and symmetric neighborhoods of 0  (see also [5, 6, 7]). 

Moreover, given Nk  and RUU k ,,1  , set 
kk uuUU   11 {:= : 

},,11 kk UuUu   , and UUUk :=  ( k  times). 

      We now give the notions of filter convergence and filter boundedness. 

      Let 
nnx )(  be a sequence in R  and Rx . We say that xxnn =lim  iff for every 

(0)JU  there is N0n  with Uxn   for each 
0nn  , and that xxnn =lim)(F  iff 

FN  }:{ Uxxn n
 for every (0)JU . Note that xxnn =lim  iff xxnn =lim)( cofinF . 

      Let 
nnB )(  be a sequence of subsets of R . We say that 0=lim nn B  iff for every 

(0)JU  there is N*n  with UBn   for any *nn  , and 0=lim)( nn BF  iff the set 

{        }    for each (0)JU . Observe that 0=lim nn B  iff 0=lim)( cofin nn BF . 

      Let 
nnU )(  be an increasing sequence in (0)J . A sequence 

nnx )(  in R  is F -bounded by 

nnU )(  iff FN  }:{ nn Uxn . We say that 
nnx )(  is eventually bounded by 

nnU )(  iff it is 

cofinF -bounded by 
nnU )( . 

      From now on, E  is a  -algebra of subsets of an infinite set G . If Rm E:  be a 

finitely additive measure, set },:)({=)( ABBBmAm  E , EA . We say that m  is 

)(s -bounded iff 0=)(lim nn Am  for every disjoint sequence 
nnA )(  in E , and that m  is  -
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additive iff 0=)(lim nn Cm  for every decreasing sequence 
nnC )(  in E  with  =1= nn C  

(see also [5, 6, 7]). 

      We now prove the next technical lemma (see also [1, Lemma 3.3], [3, Lemma 2.2] and 

[4, Lemma 3.1]).  

 

Lemma 2.2  Let 
ninia ,, )(  be a double sequence in R , and F  be a diagonal filter. 

)  If 0=lim)( ,nii aNF   for each Nn , then for every *FI  there exists *FJ , 

IJ   such that 0=lim ,niJi a  for all Nn . 

)  If 
iiV )(  is an increasing sequence in (0)J  and 

inia )( ,
 is F -bounded by 

iiV )(  

for every Nn , then for each *FI  there is *FJ , IJ   such that 
inia )( ,
 is eventually 

bounded by 
iiV )( .  

Proof: )  Let 
ppU )(  be a countable basis of neighborhoods of 0 . By hypothesis, for 

every n , Np  we have FN  }:{:= ,, pnipn UaiA . Since F  is diagonal, for each *FI  

there is *FJ , IJ  , such that for every n , Np  the set 
pnAJ ,\  is finite. Thus, for 

every n , Np  there is Ni  (without loss of generality Ji ) with 
pni Ua ,
 for all ii  , 

Ji . This proves ) .     

The proof of )  is analogous, taking the sets }:{:= ,

*

inin VaiA N , Nn , instead of the 

pnA ,
’s.      

3  The main results 

      We begin with a convergence theorem for topological group-valued measures (for 

related results see also [1, Theorems 2.6 and 3.5] for the Banach space setting and [3, 

Lemma 3.1 and Theorems 3.1, 4.1 and 4.2] for the lattice group context). Note that the 

hypothesis that the involved filter is block- respecting is essential, even when R=R  (see 

also [1, Remark 3.4]).  

 

Theorem 3.1  Let F  be a block-respecting filter of N , Rm j E: , Nj , be a sequence 

of  -additive measures, 
nnA )(  be a disjoint sequence in E , with 

i) 0=)(lim njj Am  for any Nn , and 

ii) 0=)(lim)( pPpjj Am F  for every NP . Then, 

)  for every strictly increasing sequence 
nnl )(  in N  we get  

 0;=)(lim)(
n

ln
n

AmF  (1) 

)  if F  is also diagonal, then the only condition ii) is sufficient to get (1).  

Proof: Put 
n

ln AH : , Nn . If we deny the thesis, then there is (0)JU  with 

FN  })(:{:= UHmnC nn
. Note that *})(:{=\:= FNN  UHmnCI nn

: otherwise 

there is F'F  with  ='FI , namely CF '  and hence, FC , a contradiction. 

 Let now 
kkU )(  be a decreasing sequence in (0)J , with UU =0

, and 
12  kk UU  for every 

Nk  (see also [6]). It is not difficult to see that 
1 lkk UUl  for all k , Nl  with 1 kl . 
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Let 1=0N . By  -additivity of 
1m , there exists a cofinite subset N1P , with 

110 min:=< PpN , and 
111 )( UFm  , where 

tPt HF
1

1 :=  . By i), there is an integer 
11 > pN  

with 
1)( UHm ti   whenever 

1Ni   and 
1,1,= pt  . 

By  -additivity of 
1m , 

1
2 ,, Nmm  , there is a cofinite subset 

12 PP  , with 

221 min:=< PpN , and 
22)( UFmr   for every 

1,1,= Nr  , where 
tPt HF

2
2 :=  . Arguing 

as above, there exists 
22 > pN  with 

2)( UHm ti   whenever 
2Ni   and 

2,1,= pt  .       

Proceeding by induction, we find: a strictly decreasing sequence 
kkP )(  of cofinite subsets 

of N , a strictly decreasing sequence 
kkF )(  in E  and two strictly increasing sequences 

kkN )( , 
kkp )(  in N  such that, for every Nk ,  

3.1.1) 
kk pN > , 

kk Np >1
, 

kk Pp min= ; 
t

k
Ptk HF = ;  

3.1.2) 
11)( 

  kkr UFm  for all 
kNr ,1,=  ;  

3.1.3) 
kti UHm )(  whenever 

kNi   and 
kpt ,1,=  .  

Since F  is block-respecting, there is *

21 },,{:= FjjJ , IJ  , with 
1<  kkk NjN  for 

every Nk . As *FJ , then either *

5311 },,,{:= FjjjJ  or *

6422 },,,{:= FjjjJ . 

Without loss of generality, let *

1 FJ  (see also [1, 3, 4]). Put 
12

1=:=



h

jh HA . We get:  

 );()(=)(
531111

 jjjjjj HHmHmAm  

 


)(=)(
32311212 h

jjj
h

j
h

j HHHmAm   (2) 

 2.),()(
3212121212




hHHmHm
h

j
h

j
h

j
h

j
h

j   

 Since 
hhh pNj 21212 << 

 and  

 ,everyfor = 12
12

=
3212

N 




hFHHH hl

h
pl

h
j

h
j   (3) 

 from (3) and 3.1.2) used with hk 2=  we obtain  

 .)( 312
321212

UUHHm h
h

j
h

j
h

j  


  (4) 

 Moreover, since 
12223232 <<<  hhhh ppNj  for every 2h , from 3.1.3) used with 

12= hk  we get 
12

12
)( 


 h

l
j

h
j UHm , 2h , 3,21,3,= hl  , and hence  

 .1)()( 312
323112

UUUhHHHm hh
h

jjj
h

j  


  (5) 

 If 
1

12
)( UAm

h
j 


, then from (2), (4) and (5) we have UUUHm jj  21

11
)(  and 

UUUUUUHm
h

j
h

j 


11321
1212
)(  for all 2h . But we know that 

UHm
h

j
h

j 


)(
1212

, and so we have a contradiction. Thus, we get that 
1

12
)( UAm

h
j 


 for all 

Nh , and so *})(:{:= FN  UAmlL l
. Since, by ii), FN L\ , we obtain 

 )\( LL N , which is absurd. This proves ) . 

We now prove ) . If we deny the thesis, then, proceeding analogously as in the proof of 

) , we find *FI  and (0)JU  with UAm
n

ln )(  for each In . By Lemma 2.2, there is 

*FJ , IJ  , with 0=)(lim
n

ljJj Am  for any Nn . Note that the sequence )(
n

ln Am , 

Nn , does not ))(( JF -converge to 0  (see also [1]). Since *FJ  and F  is block-
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respecting, then, by Proposition 2.1, )(JF  is block-respecting too. As FF )(J , it is easy 

to see that 
n

n
lA )(  satisfies ii) with respect to )(JF . By )  used with )(JF  and 

n
n

lA )( , it 

follows that 0=)(lim))((
n

lnn AmJF , obtaining a contradiction. This proves ) .        

       

We now extend Theorem 3.1 to the setting of finitely additive measures.  
 

Theorem 3.2  Let 
nnA )(  be as in Theorem 3.1, F  be a block-respecting filter of N , 

Rm j E: , Nj , be a sequence of finitely additive s -bounded measures, and assume 

that 

i) 0=)(lim njj Am  for any Nn ; 

ii) 0=)(lim)( pjPpj Am 
F  for every NP . 

Then for every strictly increasing sequence 
nnl )(  in N  we get  

 0.=)(lim)(
n

ln
n

AmF  (6) 

 If F  is also diagonal, then the only condition ii) is enough to get (6).  

Proof: By the Stone Isomorphism Theorem (see also [8]) there is a topological space Ω, 

such that E  is isomorphic to the algebra Q  of all clopen subsets of Ω. Let us denote by 

QE:  such an isomorphism, and let )(Q be the  -algebra generated by Q . Thus for 

every Nj  the measure Rm j  Q:1  is  -additive and admits a  -additive 

extension Rj  )(: Q  (see also [5, 9, 10]), satisfying together with the sets )(1

nA , 

Nn , the conditions i) and ii) of Theorem 3.1. Hence, 

)(lim)(=))((lim)(=0 1

n
lnn

n
lnn AmA FF  , and so we get (6). 

The last assertion follows by arguing as in the proof of Theorem 3.1, ) .       

We now give a version of the Nikodým boundedness theorem for topological group-valued 

measures (for the Riesz space context, see also [4, Lemma 3.4 and Theorem 3.5]). 

  

Theorem 3.3  Let F  be a block respecting filter of N , Rm j E: , Nj , be a sequence 

of finitely additive )(s -bounded measures, and 
nnA )(  be a disjoint sequence in E . Let 

(0)JU , 
nnW )(  be an increasing sequence in (0)J , and set UWnV nn := , Nn . 

Suppose that: 

j) the set }:)({ NnAm pn
 is eventually bounded by 

nnW )(  for each Np ; 

jj) the set }:)({ N 
nAm pjPp

 is F -bounded by 
nnW )(  for any Np . Then 

) for every strictly increasing sequence 
nnl )(  in N , the set }:)({:= NnAmD

n
ln

 is F -

bounded by 
nnV )( . 

) If F  is also diagonal, then the only condition jj) is enough in order that D  is F -

bounded by 
nnV )( .  

Proof: For every Nn , let 
n

ln AH := . First of all note that, if the 
jm ’s are  -additive, 

then the proof of )  is similar to that of Theorem 3.1, ) . Indeed, if the thesis of the 

theorem is not true, then *})(:{:= FN  nnn VHmnI . By  -additivity of 
1m , there is a 
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cofinite set N1P , with 
11 min=<1 Pp  and UFm  )( 11

, where 
tPt HF

1
1 :=  . By j) there 

is 
11 > pN  with 

iti WHm )(  for each 
1Ni   and 

1,1,= Nt  . By induction, there are a 

strictly decreasing sequence 
kkF )(  in E  and two strictly increasing sequences 

kkN )( , 

kkp )(  in N  such that, for each Nk ,   

3.3.1) 
kk pN > , 

kk Np >1
; 

11)( 

  kkr UFm  for every 
kNr ,1,=  ;  

3.3.2) 
iti WHm )(  for any 

kNi   and 
kpt ,1,=  .  

      As F  is block-respecting, we find a set *

5311 },,,{:= FjjjJ , IJ 1
, with 

1<  kkk NjN  for every Nk . For any Nh  we have:  

 ;)(
321212

UHHm
h

j
h

j
h

j 


  (7) 

 
12

12
)( 


 h

l
j

h
j WHm , 2h , 3,21,3,= hl  , and  

 .1)()( 12
323112




 h
h

jjj
h

j WhHHHm   (8) 

Let now 
12

1=:=



h

jh HA . If 
1212

)(



h

j
h

j WAm , then from (2), (7) and (8) we obtain 

1212
1212

1212
=)(







h
j

h
jhh

h
j

h
j VUWjUWhAm  

and 

11
1

111
=)( jjjjj VUWjUWAm  . 

This contradicts the fact that 
121212

)(



h

j
h

j
h

j VHm . Thus 
1212

)(



h

j
h

j WAm  for all Nh , 

and hence *})(:{ FN  ll WAml . From this, arguing as at the end of the proof of 

Theorem 3.1, ) , we get a contradiction, and this proves ) . From ) , proceeding as in 

the proof of Theorem 3.1, ) , we get ) , at least in the  -additive case. 

      When the 
jm ’s are finitely additive and )(s -bounded, it is enough to use the results 

obtained in the  -additive setting and to argue as in Theorem 3.2. 
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