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FOURIER TRANSFORM AND ITS APPLICATION 

DARINA STACHOVÁ 

ABSTRACT. By means of Fourier series can be described various examples of wave motion, 
such as the sound, or wave of the earthquake. It can be used in many research or work, such as 
the data analysis after an earthquake or digitizing music. Generalization of Fourier series, 
which allows for some applications more appropriate expression is the Fourier integral. 
Fourier transform based on a Fourier integral in the complex form. Fourier transform is an 
important tool in a number of scientific fields. Its advantages, disadvantages and subtleties 
have been examined many times by dozens of mathematicians, physicists and engineers. In this 
contribution we try to summarize important aspects of this transform and discuss variety of its 
uses in contemporary science with emphasis on demonstrating connections to dynamic 
interactions in the vehicle-roadway system. 
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1 Introduction 

Empirical measurements in various domains – economical, technical, or other – are 
often turned into time series. Based on this it is possible to perform analysis, which in turn 
allows us to better understand the dynamics of the factors involved. To this end, we use the 
Fourier transform. Being discovered at the turn of the 19th century, the theory of the 
Fourier transform is currently used in signal processing such as in image sharpening, noise 
filtering, etc. For us the relevant application is in the theory of dynamic interaction in the 
vehicle-roadway system. 

The basis of the Fourier transform is the so-called Fourier mapping, i.e., the 
transformation of one function to another, from properties of which we can obtain 
information about the original function. Fourier transform expresses a time-dependent 
signal using harmonic signals, i.e., the sine and cosine functions, in general functions of 
complex exponentials. It is used to transform signals from the time domain to the 
frequency domain. A signal can be continuous or discrete. See Figure 1 for a depiction of 
the correspondence between the time-based and frequency-based representation. 

 

Figure 1: Amplitude frequency diagram 
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2 Fourier integral 

A generalization of the Fourier series that permits in some applications a more 
appropriate expression of a non-periodical function defined almost everywhere in R is the 
Fourier integral. 

Theorem 1: Let f: R→R be a function that 
a) is piece-wise continuous on R along with its derivative f ', 
b) is absolutely integrable on R, i.e.,   ttf d


  converges. 

Then all t  R satisfy 

      sstsftf dcosd
1~

0
 








, where      



 


sfsftf

tsts
limlim

2

1~
. (1) 

Note 1: From the claim of Theorem 1, it follows that the values of the double integral 
on the right-hand side of (Eq. 1) is equal to f(t) for each t  R in which f is continuous and 
is equal to the arithmetic mean of the left- and right- limits of this function in each point of 
discontinuity, provided the conditions a) and b) of this claim hold. 

Note 2: Using the fact that t  R,  s  R and ω  ;0  we have cos ω(t – s) = 

= cos ω t cos ω s + sin ω t sin ω s, we can rewrite (1) in the form 

        dsincos
~

0
 


tbtatf , (2) 

where a(ω) =   sssf dcos
1 
 




, b(ω) =   sssf dsin

1 
 




, ω  ;0 . (3) 

Definition 1: The right-hand side of (Eq. 1) is called the double Fourier integral of 
f: R→R. The right-hand side of (Eq. 2) is the single Fourier integral of f. 

Note 3: It is not difficult to see that the single Fourier integral (Eq. 2) is 
a generalization of the double Fourier integral and the functions a: ;0 →R, b: ;0 →R 

defined by (Eq. 3) are a generalization of the standard Fourier coefficients of a periodic 
function. It is clear that if f: R→R is an even function, then b(ω) = 0, 

    sssfa dcos0
2      and      dcos

~
0
 tatf  =   stssf dcoscosd 00

2

 


. 

Similarly, if f is odd, we have: a(ω) = 0, b(ω) =   sssf dsin0
2 
 

  and we have 

     dsin
~

0 tbtf 
  =   stssfd dsinsin00

2

 

. 

Note 4: Using the well-known Euler’s formula for exponential and goniometric 
functions: cos ωt =  tt  ii

2

1 ee  , sin ωt =  tt  ii
i2

1 ee   in the single Fourier integral 

(Eq. 2), we obtain t  R:             de
2

i
e

2

i~

0

ii 



 







 tt baba
tf . 

By letting    
2

i  ba 
 = c(ω),    

2

i  ba 
 = c(– ω) =  c  for ω  ;0 , we have for 

all t  R:       de
~ i tctf 




, (4) 

where c(ω) = 
2

1 [a(ω) – ib(ω)] =   ssf sde i
2
1 






  for all ω  R. (5) 

Definition 2: The right-hand side of (4), where c: R→C is defined by (5) is called the 
Fourier integral of f: R→R in a complex form. 
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3 Fourier transform 

Definition 3: Let f: R→R along with its derivative f ' be piece-wise continuous on R, 
and let f be absolutely integrable on R. Then we call f the source of Fourier transform. Let 
the set of such functions f: R → R be denoted by DF. Then the function F: iω → F(f(t)), 

where F(f(t)) = F(iω) =   ttf tde i



 , (6) 

where ω   ;  is called the Fourier image of f and the mapping F from the set of 
functions DF defined by (Eq. 6) is called the forward Fourier transform. 

Theorem 2: If f   DF, then there exists a Fourier image F(iω) of f defined by (Eq.6), 

which satisfies     


 dei
2

1~ i tFtf 



, (7) 

where      



 


sfsftf

tsts
limlim

2

1~
 for all t  R. 

Definition 4: The mapping F–1(DF) defined by (7) is called the inverse Fourier 

transform, i.e., F–1(F(iω)) =     


 dei
2

1~ i tFtf 



, t   R. 

Note 5: The Fourier image F(iω) is in the technical literature often called the spectral 
characteristic of f. Its magnitude F(ω) = |F(iω)| is the amplitude characteristic of f, 
function α(ω) = – Arg F(iω), ω   ;  is called the phase characteristic of f and the 
function P(ω) = |F(iω)|2 power characteristic (power spectrum) of f. Hence, for all ω  R 

F(iω) = F(ω) e
–iα(ω) = A(ω) – iB(ω), where A(ω) =   tttf dcos




 , B(ω) =   tttf dsin






. 

From this it follows that F(ω) =     22 BA  , α(ω) = arctan [B(ω)/A(ω)], which means 

that the amplitude function F(ω) is an even function and the phase function α(ω) is an odd 
function of the independent variable (frequency) ω. 

4 Use of Fourier transform in solving representative problems 

Recall that according to the Euler’s formula we can write eiωt = cos ωt + i sin ωt. 

Example 1: Find the Fourier image of the function f(t): R→R , f(t) = 
tae , a  R+. 

Solution: From equations (Eq. 4) and (Eq. 5) it follows that 
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   




























































0

i0i

2
1

0

i
0

i
2
1i

2
1

i

e

i

e
dededee











 aa
sss

sasa
sasassa

 

= 
2

11

i

1

i

1

2

1

 












 aaa
, i.e.,     





d
e1~

2

i







 a
tftf

t

. 

 



DARINA STACHOVÁ 
 

158 

Figure 2: Comparing a graph of a function with its Fourier image 

Therefore the Fourier image of 
tae  is F(

tae ) =   222

2

1

21

 





aa
a

. 

Fourier transform has a wide variety of uses; we have already shown some of them for 
illustration. Fourier transform is also used to solve differential equations. The key idea is 
that the Fourier transform transforms the operation of taking derivatives into multiplication 
of the image by the independent variable. If we perform the Fourier transform using all 
independent variables we obtain as image a solution of the equation with no derivatives. 
When we solve it, it suffices to find the Fourier preimage which usually is the most 
difficult part. Unfortunately, it can also happen that the solution has no preimage. Then this 
method does not work. However, we may perform the Fourier transform using only some 
independent variables. This yields a differential equation with fewer variables and with 
parameters, which might be easier to solve than the original equation; nonetheless the 
ultimate difficulty may still be in finding the preimage. 

Example 2: Using the Fourier transform find a solution of the differential equation 
satisfying the following conditions: 

a) y'(t) + k y (t) = a te , where k  R+ – {1}, b  R, t  R,  ty
t
lim


 =  ty

t
lim


 = 0, 

b) y''(t) + 3y'(t) + 2 y (t) = te , t  R,  ty
t
lim


 =  ty

t
lim


 = 0. 

Note: Fourier transform can also be used for solving ordinary linear differential 
equations with constant coefficients assuming that the solution of such equation along with 
its derivatives of order up to the order of the equation has properties from Definition 3. 

Solution: Let y, y', y''DF and write F(y(t)) = Y(iω). Then F(y'(t)) = iωY(iω), 
F(y''(t)) = –ω2Y(iω). 

a) Since F( tea  ) = 
21

2


a , we have y(t) =   dteiY ti




 

2

1
 = dte

a ti





 21

1
. 

Thus y(t) = 
1k

aet

 for t  0; , y(t) = 















1
2

1 2k

e

k

e
a

ktt

 for t  ;0 . 

b) Since F( te ) = 
21

2


, it follows that y(t) =   dteiY ti




 

2

1
 = dte ti






 21

11
. 

Hence y(t) = te
6

1
 for t  0; , y(0) = 

6

1
, and y(t) = tt ee

t 2

3

2

2

12  


 for t   ;0 . 

Example 3: Some situations require specifying the problem using a diagram. Here the 
subject of analysis is the so-called quarter model of a vehicle shown in Figure 3. This 
computational model represents one half of one axle of a vehicle. Unevenness of the road 
surface is the main source of kinematic excitation of the vehicle. The vehicle’s response to 
this excitation can be found numerically in both the time and frequency domain. In the 
time domain we are mainly interested in time evolution of contact forces and in the 
frequency domain in the power spectral densities of power forces in relation to the power 
spectral densities of the unevenness of the road [1]. 
As an example, we use numerical characteristics of the vehicle Tatra model T148. 
Weight parameters of the model: kg 930 21 m  kg4552 m  

Rigidity constants of the coupling: -1
1 mN716,5 143 k  -1

2 mN 300,0 275 1 k  
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Damping coefficients: -1
1 skg 614,0 9 b  

Note: Inherent part of the process of solving the problem is 
the formulation of simplified models of the vehicle, their 
mathematical description, and determination of the vehicle’s 
response in the time domain. Computational models of vehicles 
can have varied complexity depending on the nature of problem 
to be solved. Oftentimes the so-called quarter- of half models are 
used; these models model motion and effects of a quarter or half 
of the vehicle. Nowadays, however, it is not uncommon to use 
spatial models of vehicles. 

Figure 3: Quarter model of a vehicle 

The law of conservation of mechanical energy is a special case of the conservation of 
energy law, which applies to all types of energy. In the case of dissipative forces such as 
frictional forces, part of the mechanical energy is converted to heat, but the total amount of 
energy remains the same. 

Solution: Applying a general procedure [2] to the model from Figure 3, we obtain 
equations of motion of the modeled vehicle. With that we also obtain expressions 
describing interaction forces at the point of contact of the vehicle’s axle with the road 
surface. 

            trtrbtrtrkmtr '''' 21121111   

                      thtrbtrtrbthtrktrtrkmtr '''''' 222112221122   (8) 
Using the principle of equal action and reaction, we derive the following: 

               tFFthtrbthtrkGtFtF dynstRV  ''22222 , 

i.e., Fst = – G2 and Fdyn(t) =          thtrbthtrk ''2222  . (9) 
We rearrange the equations (8) as follows: 

          0'''' 2111211111  trktrktrbtrbtrm  

                  0'''''' 2222111222211122  thktrktrktrkthbtrbtrbtrbtrm  

 Fdyn(t) =        thktrkthbtrb 222222 ''  . (10) 

Function f(t) and its time derivative will be then transformed in this way:  tfa  to  Fa , 

 tf '  for f(± ) = 0 to  Fi ,  tf ''  for 'f (± ) = f (± )= 0 to   F2 . 
The complex Fourier transform of (Eq. 10) after rearranging has the following form: 

    0ii 11211
2

11  kωbrkωbωmr  

      0iiii 222121
2

22111  kωbkkωbωbωmrkωbr , 

dynF  222 i kωbr  +  22i kωb  . (11) 

The first two equations of (Eq. 11) can be written as      PSra   or in the matrix 

form as 

























2

1

2

1

2221

1211

PS

PS

r

r

aa

aa
  (12) 

A solution is the found using the Cramer’s rule, i.e., 
D

D
r 2

2  , 
D

D
r 1
1  , (13) 

where D = 21122211 aaaa  , D1 = 122221 aPSaPS  , D2 = 211211 aPSPSa  . 
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If we then consider that in the Fourier transform the parameter   represents the 
angular frequency in  s

rad , then the coefficients aij in (Eq. 12) have the following form: 

     1
2

1111 i bmka ,     1112 i bka , PS1 = 0 + i 0,     1121 i bka , 

      21
2

22122 i bbmkka , PS2 = (k2) +   2i b . 
The expression (Eq.13) is calculated numerically for chosen values of ω in the selected 

frequency band. In this solution we ignore the damping of the tire, i.e. b2 = 0 [kg s-1]. The 
solution thus applies to the simplified model shown in Fig. 3. Since b2 = 0, we have dynF

 122  rk . 

5 Conclusion 

Why do we use transformations? For various reasons, for instance: 
 Transformations allow transforming a complicated problem to a potentially simpler one. 
 The problem can be then solved in the transform domain. 
 Using the inverse transform we obtain solutions in the original domain. 
 Fourier transform is appropriate for periodical signals. 

- It allows uniquely transforming a signal from/to time representation f(t) to/from 
frequency representation F(iω). 
- It allows analyzing the frequency content (spectrum) of a signal (for instance in non-
invasive methods – material diagnostics or magnetic resonance). 

The basis of every experimental science is measurement, since it is the only tool to 
quantitatively describe properties of real-world physical processes. Solution of dynamical 
problems can be realized both in the time and the frequency domain. Both forms have their 
advantages, complement one another and represent two different facets of the same 
physical phenomenon. 
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