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FOURIER TRANSFORM AND ITS APPLICATION
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ABSTRACT. By means of Fourier series can be described various examples of wave motion,
such as the sound, or wave of the earthquake. It can be used in many research or work, such as
the data analysis after an earthquake or digitizing music. Generalization of Fourier series,
which allows for some applications more appropriate expression is the Fourier integral.
Fourier transform based on a Fourier integral in the complex form. Fourier transform is an
important tool in a number of scientific fields. Its advantages, disadvantages and subtleties
have been examined many times by dozens of mathematicians, physicists and engineers. In this
contribution we try to summarize important aspects of this transform and discuss variety of its
uses in contemporary science with emphasis on demonstrating connections to dynamic
interactions in the vehicle-roadway system.
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1 Introduction

Empirical measurements in various domains — economical, technical, or other — are
often turned into time series. Based on this it is possible to perform analysis, which in turn
allows us to better understand the dynamics of the factors involved. To this end, we use the
Fourier transform. Being discovered at the turn of the 19™ century, the theory of the
Fourier transform is currently used in signal processing such as in image sharpening, noise
filtering, etc. For us the relevant application is in the theory of dynamic interaction in the
vehicle-roadway system.

The basis of the Fourier transform is the so-called Fourier mapping, i.e., the
transformation of one function to another, from properties of which we can obtain
information about the original function. Fourier transform expresses a time-dependent
signal using harmonic signals, i.e., the sine and cosine functions, in general functions of
complex exponentials. It is used to transform signals from the time domain to the
frequency domain. A signal can be continuous or discrete. See Figure 1 for a depiction of
the correspondence between the time-based and frequency-based representation.

Amplitude

Figure 1: Amplitude frequency diagram
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2 Fourier integral

A generalization of the Fourier series that permits in some applications a more
appropriate expression of a non-periodical function defined almost everywhere in R is the
Fourier integral.

Theorem 1: Let /- R—R be a function that
a) is piece-wise continuous on R along with its derivative /",

b) is absolutely integrable on R, i.e., ji)| f (t)| dt converges.

Then all ¢ € R satisfy
f(z):ﬁdwf £(s)cosw(r —s)ds, where f(t):%ng£l+ £(5)+ tim f(s)} . (1)

Note 1: From the claim of Theorem 1, it follows that the values of the double integral
on the right-hand side of (Eq. 1) is equal to f{¢) for each # € R in which f'is continuous and
is equal to the arithmetic mean of the left- and right- limits of this function in each point of
discontinuity, provided the conditions a) and b) of this claim hold.

Note 2: Using the fact that Vi € R, Vs € Rand Vw € (0;00) we have cos w(f —s) =

=cos w tcos w s+ sinwtsin w s, we can rewrite (1) in the form

f(r)z 0f[a(a)) cosa)t+b(a)) sin a)t]da), (2)
0
where a(w) = 1 Tf(s) cosws ds, b(w) = 1 Tf(s) sinwsds,w € <O;oo). 3)
T o T -

Definition 1: The right-hand side of (Eq. 1) is called the double Fourier integral of
f- R—R. The right-hand side of (Eq. 2) is the single Fourier integral of f.
Note 3: It is not difficult to see that the single Fourier integral (Eq. 2) is

a generalization of the double Fourier integral and the functions a: <O;oo) —R, b: <0;oo) —R
defined by (Eq. 3) are a generalization of the standard Fourier coefficients of a periodic
function. It is clear that if f:R—R is an even function, then b(w) = 0,
a(w)= %jg’f(s)cos wsds and f(t)= [ a(®)cos wtdaw = %jg’da)jg’ f(s) cos ws cos ot ds .
Similarly, if f is odd, we have: a(w) = 0, b(w) = 2|7 f(s)sinws ds and we have
fe)= [ b(@)sinwt do = %jg’ dw[ f(s)sin @s sin ot ds .

Note 4: Using the well-known Euler’s formula for exponential and goniometric
ot in the single Fourier integral

—iot

functions: cos wt = L' +e7"), sinwt = (e —¢
2 2i

(Eq. 2), we obtainV t € R: f(t)= T[a(m)—zib(a)) e + a(a))w;ib(a)) ei”’} dw
0

By letting w = c(w), w =c(-w)= clw) forw € <O;oo), we have for
allt € R: f(1)= Tc(a))ei‘”da}, 4)
where c(w) = 1 [a(0) - ib(w)] = 5+ T f(s)e*ds forall w € R. (5)

Definition 2: The right-hand side of (4), where ¢ R—C is defined by (5) is called the
Fourier integral of f: R—R in a complex form.
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3 Fourier transform

Definition 3: Let f© R—R along with its derivative /' be piece-wise continuous on R,
and let / be absolutely integrable on R. Then we call f'the source of Fourier transform. Let
the set of such functions f> R — R be denoted by Dr. Then the function F: iw — F(f(¢)),

where F(0)) = F(iw) = | f(t)e "dt, 6)

where @ € (— oo;oo) is called the Fourier image of f and the mapping F from the set of
functions Dr defined by (Eq. 6) is called the forward Fourier transform.
Theorem 2: If f € Dy, then there exists a Fourier image F(iw) of f defined by (Eq.6),

which satisfies f(z):zi [F(io)e”do (7)
T —o

where f(t):%{lim £(s)+ 1im f(s)} forall t € R.
s+ s—>t—
Definition 4: The mapping F '(Ds) defined by (7) is called the inverse Fourier
transform, i.e., F ' (F(iw)) = ]7(t)=2L TF(ia))ei“”da) ,t € R.
T

Note 5: The Fourier image F(iw) is in the technical literature often called the spectral
characteristic of f. Its magnitude F(w) = |F(iw)| is the amplitude characteristic of f,

function a(w) = — Arg F(iw), @ €(—o0;00) is called the phase characteristic of f and the
function P(w) = |F(iw)|* power characteristic (power spectrum) of f. Hence, for all € R

Flio) = F(w) € = A(w) - iB(w), where A() = [ f(t)coswtdt, Bw)= | f(t)sinwedi

From this it follows that F(w) = 4> (@)+ B*(®) , a(w) = arctan [B(w)/A(w)], which means
that the amplitude function F(w) is an even function and the phase function a(w) is an odd
function of the independent variable (frequency) w.

4 Use of Fourier transform in solving representative problems

Recall that according to the Euler’s formula we can write ¢’ = cos w? + i sin wt.

Example 1: Find the Fourier image of the function f{¢): R—R , f(t) = el
Solution: From equations (Eq. 4) and (Eq. 5) it follows that

1 a‘ ‘ —IZUS a— 1(u s a+1w s e(afia))s 0 e*(llJria))s *
c(w) = 3 je ds = [Ie ds+je dsj L _ _ '
o 0

,a €R".

a-iw | a+iw
1 1 1 1 1 12 e
= + =— ,1e =— da).
2 ( -iw a+1a)J Ta+o’ f() f() ﬂ';[na‘i‘a)z

157



DARINA STACHOVA

Figure 2: Comparing a graph of a function with its Fourier image

Therefore the Fourier image of e is F( el )= 1.2 =— 2 5.
a 1+ (%)2 a +w

Fourier transform has a wide variety of uses; we have already shown some of them for
illustration. Fourier transform is also used to solve differential equations. The key idea is
that the Fourier transform transforms the operation of taking derivatives into multiplication
of the image by the independent variable. If we perform the Fourier transform using all
independent variables we obtain as image a solution of the equation with no derivatives.
When we solve it, it suffices to find the Fourier preimage which usually is the most
difficult part. Unfortunately, it can also happen that the solution has no preimage. Then this
method does not work. However, we may perform the Fourier transform using only some
independent variables. This yields a differential equation with fewer variables and with
parameters, which might be easier to solve than the original equation; nonetheless the
ultimate difficulty may still be in finding the preimage.

Example 2: Using the Fourier transform find a solution of the differential equation
satisfying the following conditions:
a) y(&)+ky@®=ae! wherek € R —{1},b € R t € R, Iim »(t) = limy(t) =0,

t——0 [—0
b) YO+ 3O+ 2y =e",teR lim () = limy() =0.
——0 —0

Note: Fourier transform can also be used for solving ordinary linear differential
equations with constant coefficients assuming that the solution of such equation along with
its derivatives of order up to the order of the equation has properties from Definition 3.

Solution: Let y, ', y"€Dr and write F(y(f)) = Y(iw). Then F(/'(f)) = iowY(iv),
F('(1)) = -0 Y(iw).

a) Since F(ae_M)= a 2 =
I+ w

1 = , | A
we have y(1) = — [Y(io)e®dt = < [ —— &“'dt .
2 T ol+o

—00

t —t —kt

ae
Thus y(¢) =
) k+1

-2
k-1 k-

J fort e <O;oo).

fort (— 00;0) (@)= a( i

1

. eldt .
+®

b) Since F( e )=

20

it follows that y(¢) = L TY(i(D) eldr = 1 T
l+® 27 o T w

2t_le” +ge’2’ for 1 €(0;00).
2 3

Example 3: Some situations require specifying the problem using a diagram. Here the
subject of analysis is the so-called quarter model of a vehicle shown in Figure 3. This
computational model represents one half of one axle of a vehicle. Unevenness of the road
surface is the main source of kinematic excitation of the vehicle. The vehicle’s response to
this excitation can be found numerically in both the time and frequency domain. In the
time domain we are mainly interested in time evolution of contact forces and in the
frequency domain in the power spectral densities of power forces in relation to the power
spectral densities of the unevenness of the road [1].

As an example, we use numerical characteristics of the vehicle Tatra model T148.

Weight parameters of the model: ~ m; =2930 kg m, =455kg
Rigidity constants of the coupling: k, =143716,5N-m”  k, =1275300,0 N-m"

Hence y(¢) = ée’ for t € (—030), (0) = é ,and y(f) =
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Damping coefficients: b, =9614,0 kg-s m,
Note: Inherent part of the process of solving the problem is

the formulation of simplified models of the wvehicle, their ki
mathematical description, and determination of the vehicle’s
response in the time domain. Computational models of vehicles
can have varied complexity depending on the nature of problem
to be solved. Oftentimes the so-called quarter- of half models are K
used; these models model motion and effects of a quarter or half
of the vehicle. Nowadays, however, it is not uncommon to use Ih
spatial models of vehicles.

Figure 3: Quarter model of a vehicle

b,

The law of conservation of mechanical energy is a special case of the conservation of
energy law, which applies to all types of energy. In the case of dissipative forces such as
frictional forces, part of the mechanical energy is converted to heat, but the total amount of
energy remains the same.

Solution: Applying a general procedure [2] to the model from Figure 3, we obtain
equations of motion of the modeled vehicle. With that we also obtain expressions
describing interaction forces at the point of contact of the vehicle’s axle with the road
surface.

7" (O)m = {=k [1 ()= (0] 1 () - ()]}
" (O)my = k[ ()= (O]= k[ (0) = H)]+ B[ (€)= 1 D)= Bol' (- RN} (®)

Using the principle of equal action and reaction, we derive the following:
F(’): _FRV(t): -G, + kz[rz(t)_ h(t)]"' bz[rz'(’)_ h'(t)]: F, + den(t)’
i.e., Fy=—G,and F(f) = k,[r,(t) = 1(2)]+ b,[1,'(¢) - 7'(2)). 9)
We rearrange the equations (8) as follows:
m, ’i"(t)"‘bl”l'(t)_bl’ﬁ'(t)"' klrl(t)_klr2(t): 0
mz’”zn(t)_bl”l'(t)Jrbl”z'(t)"Lbzrz'(t)_bzh'(t)_kl’”l(t)'i'kl’”z(t)‘*‘kz”z(t)_kzh(t): 0
Fa(t) = byry'(¢) = b, 1 (¢) + kyrs (1) = Ky (2. (10)
Function f(¢) and its time derivative will be then transformed in this way: a f' (t) to al’ (a)),
£'(¢) for it ) =0 to iwF(w), f"(¢) for f'(to0)=f(£w)=0to —w*F(w).
The complex Fourier transform of (Eq. 10) after rearranging has the following form:
Rlemo? i ov k|45 i -0 -k ]=0
ol-ibo—k]+h om0 +ibw+ioh, o+ k k|4 [-ivh, 00—k ]=0,
F,,=5[i-b-0+k]+[-ib,-0-k,]. (11)

The first two equations of (Eq. 11) can be written as [a]- {17 }z {PS } or in the matrix

a a 7 PS
formas( H IZJ-{_I}:{ 1} (12)
a) dap r PS,
.. . , . _ D, _ D
A solution is the found using the Cramer’s rule, i.e., 1, = —=, 1 = —, (13)

D D
where D = q,,-a,, —a,, *a,,, D, = PS,-a,, —PS, -a,,D,= a, - PS, - PS,-a,,.
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If we then consider that in the Fourier transform the parameter @ represents the

angular frequency in [ﬂ], then the coefficients a; in (Eq. 12) have the following form:

ay, =k —my -0 )+i-(b- o), ap=(k)+i-(~b @), PS;=0+ 10,05 =(k)+i-(~b - o),
tyy =k +ky —my - @ )+i-((b, +by) @), PS; = (ko) + i+ (b, - ).

The expression (Eq.13) is calculated numerically for chosen values of ® in the selected
frequency band. In this solution we ignore the damping of the tire, i.e. b, = 0 [kg s']. The
solution thus applies to the simplified model shown in Fig. 3. Since b, = 0, we have den =

k2'(’72_1)-

5 Conclusion

Why do we use transformations? For various reasons, for instance:
e Transformations allow transforming a complicated problem to a potentially simpler one.
e The problem can be then solved in the transform domain.
¢ Using the inverse transform we obtain solutions in the original domain.
¢ Fourier transform is appropriate for periodical signals.
- It allows uniquely transforming a signal from/to time representation f{r) to/from
frequency representation F(iw).
- It allows analyzing the frequency content (spectrum) of a signal (for instance in non-
invasive methods — material diagnostics or magnetic resonance).

The basis of every experimental science is measurement, since it is the only tool to
quantitatively describe properties of real-world physical processes. Solution of dynamical
problems can be realized both in the time and the frequency domain. Both forms have their
advantages, complement one another and represent two different facets of the same
physical phenomenon.
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