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ABSTRACT. In the lecture we will study the segment of geometry dealing with concept of 
infinity, the origin of the projective geometry and follow-through the way which leads to 
geometric modelling of special curves and surfaces in computer graphics.  
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Introduction 

For study geometric objects for computer graphics and modelling is necessary some 
knowledge of projective geometry. However the geometry of real objects is Euclidean, the 
geometry of imaging an object is projective. Hence the study of computer graphics 
naturally involves both geometries [7]. Projective geometry is useful in two levels: one is 
such architects use projective geometry when drawing a building as it would appear to an 
observer. Computer graphic use it for modelling realistic scenes. The second level of use is 
projective geometry settings for the theory of modelling curves and surfaces, because 
many of their intrinsic properties are naturally understood in a projective context. 

What is projective geometry?  

The roots of projective geometry go back to the middle ages. It was in 1425 that the 
Italian architect Filippo Brunelleschi began to discuss the geometrical theory of perspective, 
which was consolidated into a treatise a few years later [1]. The concept of perspective 
occurs besides architecture in painting and astronomy, too. 

If we compare the paintings of the Renaissance painters with the painters of the 
preceding period, we notice a difference in depiction of depth. The figures on Gothic 
pictures are placed beside one another without any attempt to capture the depth of the space.  
It was the advent of the renaissance that led artists to study the techniques necessary for 
realistic rendering. The Renaissance painters wanted to paint the world as they saw it, to 
paint it from a particular point of view, to paint in perspective, to evoke the illusion of depth 
[4, 15]. Albrecht Dürer (1471 – 1528) has several works (woodcuts), where he shows a 
method for create a perspective 2-dimensional map of the 3-dimensional object. One of 
them is the woodcut “A man drawing a lute” (Nürnberg, 1525). This figure shows the 
scientific approach that Dürer took in order to master perspective: he used wires to record 
the perceived position of points that were marked on an object [4]. Central projection, 
illustrated on Dürer’s pictures, forms the fundamental idea of projective geometry.  

In central projection is a correspondence among points of the object and points of the 
image, which is established by associating to each point of the object the point of 
intersection of the image plane with the line containing the object point and the eye. For 
example, a pair of railroad tracks that disappear off into the distance, an artist adds a 
vanishing point to the picture. A vanishing point, in general, is that point in a picture at 
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which two parallel lines in the scene appear to meet [17]. Then if we add a point at infinity, 
or ideal point of mentioned railroad tracks (and similarly for any direction of the object 
plane, and simultaneously in the image plane) the correspondence between the object and 
image planes becomes a one-to-one correspondence between the object plane completed 
with its ideal points and the image plane completed with its ideal points.  

The important concept of point at infinity occurred independently to the German 
astronomer Johann Kepler (1571-1630) and the French architect Girard Desargues (1591-
1661). Kepler (in his Paralipomena in Vitellionem, 1604) declared that a parabola has two 
foci, one of which is infinitely distant in both of two opposite directions, and that any point 
on the curve is joined to this “blind focus” by a line parallel to the axis. Desargues (in his 
Brouillon project ..., 1639) declared that parallel lines have a common end at an infinite 
distance, and again, “When no point of a line is at a finite distance, the line itself is at an 
infinite distance” [1]. Then the groundwork was laid to derive projective space from 
ordinary space by adding a common point at infinity for all lines parallel to each other and 
adding a common line at infinity for all planes to a given plane. Jean Victor Poncelet (1788-
1867) fought in Napoleon’s Russian campaign (1812) until the Russians took him prisoner. 
As a prisoner at Saratoff on the Volga (1812-1814) he still had the vigour of spirit to 
implement a great work, he decided to reconstruct the whole science of geometry. The 
result was his epoch-making “Traité des propriétés projectives des figures“, published eight 
years later, in 1822 [2]. In this work was first made prominent the power of central 
projection. His leading idea was the study of projective properties, and as a foundation 
principle he introduced the anharmonic ratio (today known as cross-ratio) [16]. The 
discovery of the principle of duality was also claimed by Poncelet. This principle of 
geometric reciprocation has been greatly elaborated and has found its way into modern 
algebra and elementary geometry [16]. 

Our list of basic ideas of projective geometry is not exhaustive. We have just mentioned 
the fundamental ideas, which we need it as a tool for the description of rational curves and 
surfaces. 

Early history of curves and surfaces 

The earliest recorded use of curves in a manufacturing environment seems to go back to 
early AD Roman times, for the purpose of shipbuilding [5]. The vessel’s basic geometry 
has not changed for a long time. These techniques were perfected by the Venetians from 
the 13th to the 16th century.  No drawings existed to define a ship hull; these became 
popular in England in the 1600s. The classical “spline”, a wooden beam which is used to 
draw smooth curves, was probably invented then. The earliest available mention of a 
“spline" seems to be from 1752 [5]. 
Another key event originated in aeronautics, where classical drafting methods were 
combined with computational techniques for the first time.  
Some other early influential development for curves and surfaces was the advent of 
numerical control in the 1950s. In the U.S., General Motors used first CAD (Computer 
Aided Design) system developed by C. de Boor and W. Gordon. M. Sabin had key role in 
developing the CAD system for British Aircraft Corporation. He received his PhD from 
the Hungarian Academy of Sciences in 1977. Sabin developed many algorithms that were 
later “reinvented” [5]. 
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A new concept 

In 1959, the French car company Citroen hired a young mathematician Paul de Faget 
de Casteljau, who had just finished his PhD. He began to develop a system for design of 
curves and surfaces with using of Bernstein polynomials. The breakthrough insight was to 
use control polygons, a technique that was newer used before. De Casteljau’s work was 
kept secret by Citroen for a long time.  

During the early 1960s, Pierre Bézier headed the design department at Rénault, the 
competitor of Citroen, also located in Paris. Bézier’s idea was to represent a basic curve as 
the intersection of two elliptic cylinders placed inside a parallelepiped [6]. Affine 
transformation of this parallelepiped would result the desired change of the curve (on 
affine map of the curve). Later, when Bézier used polynomial formulations of the initial 
concept, the result turned out to be identical to de Casteljau’s curves; only the mathematics 
involved was different [5]. 

The de Casteljau algorithm for Bézier curves 

The de Casteljau algorithm is the most fundamental algorithm in curve and surface 
modelling, but it is surprisingly simple. It is the beautiful interplay between geometry and 
algebra. A very intuitive geometric construction leads to a powerful theory [6]. 

Let us start with the four tangent theorem for conic in projective plane [3, 4, 11]. If one 
tangent is a line at infinity, we get the three tangent theorem for parabola [3] in affine 
plane: Let t1, t2, t3 be three tangents of a parabola in tangent points ଴ܸ, ଴ܸ

ଶ, ଶܸ,	  
respectively. Let the tangents at  ଴ܸ and ଶܸ intersect in ଵܸ. Let the tangent at ଴ܸ

ଶ intersects 
the remaining tangents in ଴ܸ

ଵ and	 ଵܸ
ଵ (Figure 1). 

 
Figure 1 

 
Then the following ratios are equal		ሺ ଴ܸ ଵܸ ଴ܸ

ଵሻ ൌ ሺ ଵܸ ଶܸ ଵܸ
ଵሻ ൌ ሺ ଴ܸ

ଵ
ଵܸ
ଵ

଴ܸ
ଶሻ.  

It implies that 
 ଴ܸ

ଵ ൌ ሺ1 െ ሻݐ ଴ܸ ൅ ݐ ଵܸ, 		 ଵܸ
ଵ ൌ ሺ1 െ ሻݐ ଵܸ ൅ ݐ ଶܸ	and  ଴ܸ

ଶ ൌ ሺ1 െ ሻݐ ଴ܸ
ଵ ൅ ݐ ଵܸ

ଵ, ,0〉߳ݐ 1〉. 
Then after calculation we have the point of the parabola given as a barycentric 
combination of the points  ଴ܸ, ଵܸ, ଶܸ.  

଴ܸ
ଶ ൌ ሺ1 െ ሻଶݐ ଴ܸ ൅ 2ሺ1 െ ݐሻݐ ଵܸ ൅ ଶݐ ଶܸ 

This is the simplest approach to the essential idea of de Casteljau algorithm. Point ଴ܸ
ଶ, 

the result of the algorithm, is the point of the quadratic Bézier curve given as a linear 
combination of quadratic Bernstein polynomials. Generalization for degree n gives that a 
point X(t) on the Bézier curve is given as   

ܺሺݐሻ ൌ෍ ௜ܸܤ௜
௡ሺݐሻ,

௡

௜ୀ଴
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where  ܤ௜
௡ሺݐሻ ൌ 	 ቀ

݊
݅ ቁ ሺ1 െ ,0〉߳ݐ ௜ are Bernstein polynomials of degree n andݐሻ௡ି௜ݐ 1〉. 

The initial points V0, …, Vn are the so-called control points of the curve.  

Rational Bézier curves 

Projective geometry approach allows us to consider some control points at infinity (appear 
as “control vectors”) [4].  Then we get a new type of curve with new possibilities of design 
it.  
Another approach is to define Bézier curve  ܺሺݐሻ ൌ ∑ ܑ܄

௡
௜ୀ଴ ௜ܤ

௡ሺݐሻ in projective space with 
control points  ࢏ࢂ	 ൌ ሾݓ௜ ௜ܸ ,  ௜ሿ  in P3, and to map it into the embedded affine space. In theݓ
analytic expression of the curve it yields that 

ܺሺݐሻ ൌ
∑ ௜ݓ ௜ܸܤ௜

௡ሺݐሻ௡
௜ୀ଴

∑ ௜ܤ௜ݓ
௡ሺݐሻ௡

௜ୀ଴
, ,0〉߳ݐ 1〉, 

where ௜ܸ are control points in affine space and ݓ௜ are the so-called weights of the curve. 
This type of curve is known as a rational Bézier curve, because contains the ratio of two 
polynomials. Rational Bézier curves may be evaluated equally, using the concept of cross 
ratios, the fundamental invariant of projective geometry. Application of Menelaus` 
theorem leads to the same result [10, 11]. 
Rational curves have several advantages over polynomial Bézier curves.  A degree two 
polynomial Bézier curve can only represent a parabola. Exact representation of circles and 
all conic sections requires rational degree two Bézier curves. The shape of the curve can be 
influenced not only with the shape of control polygon, but also with appropriate weights. A 
perspective projection of a Bézier curve is a rational Bézier curve. 

Duality 

A basic concept of projective geometry, the duality concept is widely used in curve 
modelling [13, 18].  Dual counterpart of plane Bézier curve defined by control points is a 
Bézier curve defined by control lines. The curve is thus given as the envelope of its 
tangents.  In 3D space the dual curve is defined by control planes. The importance of this 
dual concept is in the theory of developable surface. The key observation is, that while the 
planes χ(t) are osculating planes of a curve, they themselves, being a one parameter family 
of planes, envelope a surface [4]. Such surfaces are called developable.  

Triangular Bézier patches  

In surface modelling, the finite piece of surface is called a patch. Two basic types are 
tensor product patches and triangular Bézier patches (Bézier triangles). When de Casteljau 
invented Bézier curves in 1959, he realized the need for the extension of the curve ideas 
for surfaces. The first surface type that he considered was what we now call Bézier 
triangles. This historical first of triangular patches is reflected by the mathematical 
statement that they are more natural generalization of Bézier curves than are tensor product 
patches [6]. Thus Bézier triangles can be perceived as a generalization of Bézier curves 
(for triangular domain instead of unit interval used for curves). Let a parameter U = (u,v,w) 
be an element of triangular domain, where 	0 ൑ ,ݑ ,ݒ ݓ ൑ 1  are barycentric coordinates. 
Expression of the Bézier triangle is then very similar to expression of the Bézier curve:  

ܺሺܷሻ ൌ ෍ ௜ܸ௝௞ܤ௜௝௞
௡ ሺܷሻ,

௜ା௝ା௞ୀ௡

 

where ௜ܸ௝௞ are control points and ܤ௜௝௞
௡ ሺܷሻ are trivariate Bernstein polynomials 
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௜௝௞ܤ
௡ ሺܷሻ ൌ ௜௝௞ܤ

௡ ሺݑ, ,ݒ ሻݓ ൌ
݊!

݅! ݆! ݇!
 ௞ݓ௝ݒ௜ݑ

(݅, ݆, ݇	߳	ሼ0, 1, … , ݊ሽ and all subscripts sum to n).  
Consider now a projective Bézier triangle; the previous polynomial Bézier triangle defined 
in projective space. Following the familiar theme of generating rational curve, we define a 
rational Bézier triangle as the projection of polynomial Bézier triangle to affine space.  

ܺሺܷሻ ൌ
∑ ௜௝௞ݓ ௜ܸ௝௞ܤ௜௝௞

௡
௜ା௝ା௞ୀ௡

∑ ௜௝௞ܤ௜௝௞ݓ
௡

௜ା௝ା௞ୀ௡
, 

where ݓ௜௝௞ are weights associated with the control points ௜ܸ௝௞, describes the rational 
Bézier triangle. 

Quadrics 

While the quadratic polynomial Bézier triangle represents a part of paraboloid (if it fulfils 
some extra condition [6, 8, 9,14]), their rational counterpart allows us to represent a part of 
quadric (hyperboloid, ellipsoid or especially sphere), because every quadric surface may be 
defined as a projective image of a paraboloid.  
We get the following characterization for quadratic rational Bézier triangle lying on 
quadric surface [6, 8, 14]: A rational quadratic Bézier triangle is a part of quadric surface if 
and only if extensions of all tree their boundary curves meet in a common point of the 
quadric and have coplanar tangents there.  
Using the previous condition and the so-called Patchwork Theorem [9] for degenerated 4-
sided patches, it is possible to cover a sphere with combination of these patches [14]. 
(Figure 2 shows the set of triangular patches fulfilling the previous condition on the sphere, 
drawn with program Maple.) 

 
 

Figure 2 

Summary 

Projective geometry is a natural setting for many types of curves and surfaces used in 
computer aided geometric design (CAGD). The aim of this paper was to show the way 
from the beginnings of the projective geometry to its using in CAGD nowadays. Naturally, 
the overview is not complete, very important curves (e.g. NURBS, B-splines) and methods 
(e.g. stereographic projection [7, 18], WRD-construction [12]) and many others were not 
mentioned.  
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